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Triosephosphate isomerase deficiency
Triosephosphate isomerase (TPI) is a glycolytic enzyme which homodimerizes for full catalytic activity. Muta-
tions of the TPI gene elicit a disease known as TPI Deficiency, a glycolytic enzymopathy noted for its unique
severity of neurological symptoms. Evidence suggests that TPI Deficiency pathogenesis may be due to conforma-
tional changes of the protein, likely affecting dimerization and protein stability. In this report, we genetically and
physically characterize a humandisease-associated TPImutation caused by an I170V substitution. Human TPII170V

elicits behavioral abnormalities in Drosophila. An examination of hTPII170V enzyme kinetics revealed this substi-
tution reduced catalytic turnover, while assessments of thermal stability demonstrated an increase in enzyme
stability. The crystal structure of the homodimeric I170V mutant reveals changes in the geometry of critical
residues within the catalytic pocket. Collectively these data reveal new observations of the structural and kinetic
determinants of TPI Deficiency pathology, providing new insights into disease pathogenesis.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Functionally, TPI is a glycolytic enzyme that isomerizes dihydroxyac-
etone phosphate into glyceraldehyde 3-phosphate. This isomerization
occurs at a non-linear step in the catabolic process, enhancing the effi-
ciency of glycolysis, and is not required for the production of pyruvate.
Mutations within the TPI coding region lead to a recessive disease
known as TPI Deficiency, which is characterized by hemolytic anemia,
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neurologic dysfunction and often early death [1]. TPI Deficiency is
unique among all other glycolytic enzymopathies in the presentation
of severe neurologic deficits and the lack of ATP depletion [2]. It is not
currently understood why mutations in a non-linear glycolytic enzyme
elicit far greater pathology than other central glycolytic enzymes,
though recent work has suggested that these neurologic differentiae
are derived from a source other than general metabolic stress [3].
To date, only one of eleven physically distinct disease-associated TPI
mutations has been structurally characterized [4,5]. Additional physical
analyses of disease-associated substitutions are clearly needed to
understand the unique pathology associated with TPI deficiency.

In the present report, we have investigated a poorly studied human
disease-associated mutation of TPI that results in a valine substitution
at position I170 of the protein, located within the catalytic lid of the
enzyme. Previously, patients bearing the I170V substitution had only
been identified in a trans-heterozygous state with the more common
TPIE104D missense allele [6]. These findings left it unclear whether I170V
was viable as a homozygote, pathogenic, or simply lacked sufficient
consanguinity for observation.

We have generated a Drosophila strain containing human TPI with
an I170V mutation. Drosophila were selected for modeling this disease
as it is currently the only model organism shown to recapitulate the
complex neurologic dysfunction seen in human patients [7,8]. These
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animals are homozygous viable, but trans-heterozygotes display behav-
ioral abnormalities.

TPI utilizes the β/α triose isomerase (TIM) barrel to form its mono-
meric tertiary structure, but has only been described to function as a
dimer in vivo. The TIMbarrelmotif is the structural base of over onehun-
dred different enzymes, butwasfirst identified in triosephosphate isom-
erase (TPI). TPI monomers in vitro exhibit little catalytic activity [9,10],
but attain catalytic perfection (diffusion-limited catalytic properties)
upon dimerization [11]. Structural analyses of artificial monomeric TPI
variants have revealed flexibility of normally rigid motifs in and around
the catalytic pocket [9,10]. These studies concluded that dimerization
facilitates the rigidification of the catalytic pocket through numerous
Van der Waals forces, hydrogen bonds, and salt bridges between sub-
units within the dimer [12].

Two previous studies of a single disease-associated TPI substitution
concluded that TPI Deficiency was caused by reduced dimer stability
[4,13]. In contrast, however, our in vitro measurements of hTPII170V

thermal stability indicate an increase in enzyme stability. Further, the
structure of hTPII170V reveals a decoupling of the S96 residue from lid
closure within the active site. We demonstrate that this alteration in
catalytic site geometry leads to a decrease in catalytic turnover.

Our data establish that the disease-associated I170V substitution is
sufficient to elicit pathology in an animalmodel, and alters both catalytic
activity and thermal stability. These data reaffirm the importance of
homodimer stability in TPI Deficiency pathology. At the same time,
the results suggest a counter-intuitive association of increased TPI
stability and decreased TPI catalysis. These findings and their elucida-
tion may be critical to understanding the unique pathology associated
with TPI deficiency.

2. Methods

2.1. Mutagenesis and genomic engineering

The pGE-hTPIWT construct was generated using human TPI (hTPI)
coding region. The hTPI sequence was synthesized and recoded for
Drosophila codon usage, while maintaining Drosophila intron–exon
gene architecture and splicing, to ensure appropriate expression. The
synthesized hTPI was designed to include flanking restriction sites for
cloning into the pGE-attBTPI+ plasmid [3]. Site directed mutagenesis
was performed using the QuikChange Lightening Site-Directed Muta-
genesis Kit (Agilent Technologies). Mutagenesis primerswere generated
(Integrated DNA Technologies) to introduce an Ile-to-Val codon change
at position 170. Mutagenesis was performed with pGE-hTPIWT and con-
firmed by sequencing. TPI GEwas performed using previously published
methods [3,14,15]. Briefly, the PGX-TPI founder animals were mated to
vasa-phiC31ZH-2A animals expressing the integrase on theX chromosome
and their progeny injectedwith pGE-attBhTPIWT. Integration events were
identified via the w+ phenotype and verified molecularly. The newly
synthesized alleles were outcrossed to w1118 for five generations and
mated to y1 w67c23 P[y[+mDint2]= Crey]1b;D⁎/TM3, Sb1 (Bloomington
Drosophila Stock Center) to reduce the engineered locus. The hTPII170V

allele was generated with similar methods.

2.2. Human TPI enzyme purification

Human TPI enzyme was purified as outlined previously [3]. Briefly,
the coding sequence for Homo sapiens TPI was cloned into the bacterial
expression vector pLC3using standard techniques. The resulting plasmid
directs expression of TPI containingN-terminal His6- andMBP tags, both
of which can be removed with TEV protease. TPI protein was expressed
in BL21(DE3) Codon-Plus (RILP) Escherichia coli (Agilent Technologies)
grown in ZY auto-inductionmedia (Studier, 2005) at room temperature
for 24–30 h. Cells were harvested by centrifugation, lysed via homogeni-
zation in 25mMTris pH8.0, 500mMNaCl, 10% glycerol, 5mM imidazole,
1 mM β-mercaptoethanol and cleared by centrifugation at 30,000 ×g.
TPI was purified by nickel affinity chromatography followed by over-
night TEV protease treatment to cleave the His6-MBP tag from TPI. A
second round of nickel affinity purification was performed to separate
the His6-MBP and TEV protease. TPI protein was further purified using
anion-exchange chromatography (HiTrap-Q) followed by gel filtration
(Sephacryl S-200, GE Healthcare). Peak fractions were concentrated to
4–8 mg/ml in 20 mM Tris pH 8.8, 25 mM NaCl, 2.0% glycerol and 1 mM
β-mercaptoethanol using a Vivaspin concentrator (GE Healthcare). The
purity was N99% as verified by SDS-PAGE.

2.3. TPI enzyme assays

Isomerase activity was determined using an NADH-linked assay
as previously detailed [3,16]. Initial velocity of the enzymewas calculat-
ed over a GAP (Sigma-Aldrich, St. Louis, MO, USA) range of 0.0094–
4.23 mM; enzyme quantities as noted [Fig. 3]. All kinetic measurements
were performed at 25 °C to mimic Drosophila culture conditions, and
measured in triplicate by monitoring the absorbance of NADH at
340 nm in a SpectraMax Plus 384microplate reader (Molecular Devices).
Initial velocities were taken during the linear phase of each reaction, and
the data were fit to the Michaelis–Menten equation using nonlinear
regression in GraphPad Prism 5.0b (GraphPad Software).

Lysate isomerase assays were performed as above. Lysates were
generated as outlined previously [3] in 100 mM TEA pH 7.6 supple-
mented with cOmplete mini Protease Inhibitors (Roche Diagnostics).
Lysates were diluted to 0.1 μg/μl in 100 mM TEA pH 7.6 + inhibitors
and enzyme activity was assessed. Reactions were set up as above,
using 0.752mMGAP and 1 μg of lysate protein. Background NADH con-
sumptionwas subtracted from each reaction by normalizing changes in
absorbance to control reactions performed without GAP. All reactions
were performed in triplicate.

2.4. Behavioral testing and lifespan analyses

Mechanical stress sensitivity was examined by vortexing the ani-
mals in a standard media vial for 20 s and measuring time to recovery,
as previously [17,18]. Thermal stress sensitivity was assessed by acutely
shifting animals to 38 °C and measuring time to paralysis, similar to
the methods previously described [19,20]. For this study, paralysis was
defined as being ≥15 s period of abnormal inactivity. All behavioral
responses were capped at 600 s. Animal lifespans were performed at
25 °C as previously described [19]. A two-tailed Student's t test was
used to assess behavior, and lifespans were assessed with Log-rank
(Mantel–Cox) survival tests.

2.5. Immunoblots

Animalswere collected and aged 1–2 days at room temperature. Ten
fly heads were obtained in triplicate from each genotype and processed
as outlined previously [21]. Proteins were resolved by SDS-PAGE, trans-
ferred onto 0.45 μmPVDFmembrane. The blots were blocked in 1%milk
PBST, incubated with anti-TPI (1∶5000; rabbit polyclonal FL-249; Santa
Cruz Biotechnology) or anti-Beta tubulin (1∶4000; rabbit polyclonal d-
140; Santa Cruz Biotechnology), and the appropriate HRP-conjugated
secondary antibody. Blots were developed using enhanced chemilumi-
nescence (Pierce). Densitometric analyses of the scanned films were
performed digitally using ImageJ software (National Institutes of
Health) using sub-saturated exposures, and TPI signal was normalized
to beta-tubulin. A two-tailed Student's t test was performed to assess
differences TPI levels.

2.6. Circular dichroism and thermal stability

Circular dichroism (CD) thermal stability analyses were performed
on a Jasco J-810 as outlined previously [4]. Briefly, samples were diluted
to 350 μg/ml in 0.2 μm nylon-filtered 20 mM MOPS, 1 mM DTT, 1 mM
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EDTA pH7.4, and denaturationwasmonitored at 222 nmover 20–80 °C
at a rate of 0.267 °C/min with a pitch of 0.2 °C. Far-UV spectra were
taken in 1× PBS at indicated temperatures for better resolution [4].
DL-Glycerol-3-phosphate (Sigma), a TPI substrate analog [22–24],
was added to a final concentration of 5mM [25] and thermal stability
reassessed. All spectral data were acquired 5 times per step, and
performed in triplicate.

2.7. TPI crystallization and structure determination

Recombinant hTPIWT and hTPII170V proteins were expressed and
purified as described above. Initial TPI crystals were grown at 4 °C
using the sitting drop vapor diffusion method against a reservoir so-
lution containing 34% PEG 2000 MME and 50 mM KBr. These initial
crystals were improved bymicroseeding using a reservoir solution con-
taining 30% PEG 2000 MME and 50 mM KBr. The crystals used for data
collection grew to final dimensions of ~100 × 100 × 150 μm over the
course of 3 days prior to harvesting. Crystals were cryoprotected by
transition of the crystal into reservoir solution supplemented to 40%
PEG 2000 MME and 20% glycerol followed by flash freezing in liquid
nitrogen. Diffraction data were collected at the National Synchrotron
Light Source on beamline X25 using a Pilatus 6 M detector. Diffraction
data were integrated, scaled, and merged using HKL2000 [26] using
an I/σI cutoff of 2.0. hTPIWT crystals belong to the space group P21
(a = 47.92 Å, b = 48.85 Å, c = 93.97 Å; β = 103.66°) and contain a
dimer in the asymmetric unit. Crystals of hTPII170V belong to space
group P212121 (a = 64.92 Å, b = 73.64 Å, c = 91.77 Å), and also con-
tain a dimer in the asymmetric unit. Initial phases for both hTPIWT and
hTPII170V were estimated via molecular replacement using a search
model derived from an independent structure of human TPI (2JK2) [4].
Themodel was then refined and improved bymanual rebuildingwithin
Coot [27] combinedwith simulated annealing, positional, and anisotropic
B factor refinement within Phenix. For hTPII170V, isotropic B-factor and
TLS refinement was used. Model quality for both structures was assessed
using MolProbity [28]. Structural figures were generated using PyMol
(PyMOL Molecular Graphics System, Version 1.5.0.4, Schrödinger, LLC.).
The coordinates and structure factors associated with hTPI and hTPII170V

structures have been deposited within the Protein Databank under
accession codes 4POC and 4POD, respectively.

3. Results

3.1. I170V induces behavioral dysfunction in Drosophila

Using our Drosophila genomic engineering (GE) system [3], we gen-
erated novel alleles of human TPIwith an I170V substitution (hTPIWT and
hTPII170V). GE is optimal for examining this type of dose-dependent loss-
of-function disease, as it seamlessly places the modified alleles directly
into the Drosophila TPI gene locus ensuring endogenous expression at
all developmental stages and in all tissues [14,29]. The human TPI
gene, which shares 63% identity with Drosophila TPI, was sufficient for
Drosophila viability, confirming the strong conservation of TPI sequence,
structure, and function.

Due to the relative abundance of null TPI alleles, many TPI deficient
patients are genetically identified as trans-heterozygotes with a point
mutation over a null allele [1,2]. hTPII170V proved to be homozygous
viable, and preliminary experiments suggested the animals behaved
similar to wild type. Therefore to more closely model a putative human
condition, we generated trans-heterozygous populations and assessed
two genotypes: hTPIWT/TPInull and hTPII170V/TPInull. The TPInull allele is
a deletion of two of the three exons of the TPI gene (formerly called
TPIJS10) [8].

We collected animals, aged them at 25 °C, and examined their
mechanical- and thermal-stress sensitivity and longevity, since
these phenotypes have been shown to be hallmarks of Drosophila TPI
Deficiency [3,7,8,30]. Mechanical- and thermal-stress sensitivity were
detected in hTPII170V/TPInull animals at both early (day 3 and 4) and late
(day 20 and 22) time points, indicating progressive behavioral dysfunc-
tion [Fig. 1A,B]. A slight low-penetrant change in thermal stress sensitiv-
ity was noted in the heterozygous control population. These effects are
not observed in homozygoteWT animals, andwe believe that this mod-
est effect is likely a reflection of the heterozygote state (hTPIWT/TPInull).
Interestingly, we did not detect a significant change in longevity when
comparing hTPII170V/TPInull versus hTPIWT/TPInull [Fig. 1C]. These results
suggest Drosophila TPI Deficiency behavioral dysfunction and longevity
phenotypes may be derived from different pathogenic sources.

3.2. In vivo TPI protein levels and enzyme activity

Having identified aberrant behavior in the hTPII170V mutants, we
sought to assess lysate isomerase activity and protein levels in this mu-
tant. An analysis of wild type protein structure predicted that the I170V
substitution would likely influence catalytic properties due to its posi-
tioning within the catalytic lid of the enzyme [Fig. 5]. Previous studies
using a transgenic expression system in yeast identified a reduction
in isomerase activity due to I170V [13], and our experiments measuring
hTPIWT and hTPII170V activity in animal lysates confirmed these observa-
tions [Fig. 2]. Of note though, a previous study performed by our lab
failed to find a link between lysate isomerase activity, metabolic stress,
and disease phenotypes [3]. This study suggested that a conformational
change or depletion of cellular TPI elicited Drosophila TPI Deficiency [3].
To examine the possibility that I170V may reduce protein levels in our
system, we examined TPI levels in our newly generated alleles.Western
blots indicated no changes in TPI protein levels due to the I170V substi-
tution relative to TPIWT [Fig. 2B,C]. Thus, the I170V mutation does not
elicit pathology through a depletion of cellular TPI.

3.3. I170V reduces catalytic turnover and enhances enzyme stability in vitro

To examine how I170V may influence TPI catalysis, recombinant
human hTPIWT and hTPII170V was expressed and purified, andwe exam-
ined their respective kinetic properties [Fig. 3C]. It should be noted that
both enzymes displayed typical Michaelis–Menten behavior [Fig. 3A,B].
hTPIWT demonstrated properties similar to those previously published
[31–34], while hTPII170V displayed a ~20 fold reduction in catalytic turn-
over and a ~30 fold reduction in Km [Fig. 3C], a result in linewith similar
substitutions [34,35]. The reduced hTPII170V turnover rate is likely the
largest contributor to the altered Michaelis constant, though substrate
affinity could also be an important contributor. Regardless, the reduced
kcat and Km suggests the I170V substitution has shifted the enzyme
toward a substrate-bound state.

Since previous studies had indicated that enzyme dimerization and
stability were important molecular contributors to TPI Deficiency
[4,13], we assessed the thermal stability of hTPII170V using circular
dichroism (CD) [Fig. 4]. Over the past two decades several groups have
characterized the folding and unfolding kinetics of TPI from numerous
species [10,36–42]. These studies have established that dimerization of
TPI is a crucial determinant of protein stability, though several mono-
meric intermediates are also critical. Far-UV CD has been demonstrated
to be capable of detecting the subtle changes in TPI unfolding. CD did not
identify a marked change in protein folding at 20 °C [Fig. 4B,C], but
an assessment of thermal denaturing at 222 nm indicated a signifi-
cant change in protein stability, with hTPIWT and hTPII170V exhibiting
monophasic denaturation with Tms of 46.5 °C and 59.4 °C, respectively
[Fig. 4A]. Previous studies have shown that CD measurements of TPI
thermal denaturing elicit monophasic transitions [32,43]. Importantly,
these data indicate that hTPII170V enhances enzyme stability. Previously,
Ralser and colleagues [13] noted that while E104D impaired WT:mut
heterodimer associations in a yeast two-hybrid (Y2H) system, the
I170V mutation appeared to increase these interactions. Our results
suggest that this increase in Y2H signal was not likely due to aggrega-
tion or external factors, but that the I170V substitution may stabilize



Fig. 1. hTPII170V is characterized by behavioral dysfunction but not reduced longevity. hTPII170V/TPInull exhibits mechanical (A) and thermal (B) stress sensitivity relative to hTPIWT/TPInull,
n ≥ 20. Conversely, hTPII170V/TPInull demonstrated similar lifespans (C) as hTPIWT/TPInull, n ≥ 89. *indicates p b 0.05, **p b 0.01, and ***p b 0.001. Error bars indicate S.E.M.
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both homo-and heterodimer TPI species, yielding a more robust activa-
tion of the Y2H reporter.

The stability of the TPI dimer has previously been shown to be
sensitive to substrate occupancy [38,40]. Given the positioning of the
I170V substitution near the catalytic pocket and the altered Km, we
Fig. 2. hTPII170V exhibits reduced catalysis and normal cellular TPI levels. Isomerase assays reveal
samples of hTPIWT/TPInull and hTPII170V/TPInull (#1, #2, #3) demonstrate similar levels of cellular TP
examinedwhether hTPII170V stabilitywould be as responsive to substrate
administration as hTPIWT. UsingDL-glycerol-3-phosphate (DL-GP), a GAP
substrate analog [22–24], we measured the stabilizing shift resulting
from occupancy of the catalytic site. The addition of DL-GP to hTPIWT re-
sulted in a 3.7 °C increase in stability (Tm50.2 °C),while DL-GP enhanced
hTPII170V/TPInull reduces lysate TPI activity relative to hTPIWT/TPInull (A), n= 3. Independent
I (C), with quantification (B), n=3. ns indicates no significance. Error bars represent S.E.M.

image of Fig.�2


Fig. 3. hTPII170V reduces Km and catalytic turnover. hTPIWT and hTPII170V display typical
Michaelis Menten kinetic profiles (A, B). I170V reduces Km and catalytic turnover (C).
Error bars and ± indicate S.E.M.

Fig. 4. I170V enhances TPI stability relative toWT. CD thermal shift analyses demonstrate a
stabilization of TPI due to the I170V substitution (A), and responsiveness to catalytic site
occupancy via DL-GP substrate analog (A). Far-UV spectra demonstrate similar folding
between hTPIWT (B) and hTPII170V (C), with averaged spectra from selected temperatures
(B, C). No refolding was noted in either enzyme. Error bars represent S.D.
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hTPII170V stability only 1.6 °C (Tm 61.0 °C) [Fig. 4A]. Denaturation of both
hTPII170V and hTPIWT was irreversible [Fig. 4B,C], in agreement with pre-
vious observations [4,44,45]. These results demonstrate that hTPII170V

stability is less sensitive to substrate, and support aminor role for altered
substrate affinity in the reduction of hTPII170V Km.
3.4. hTPII170V decouples active site geometry from lid closure

Todetermine ifwe could elucidate themolecularmechanism respon-
sible for altered hTPII170V catalytic properties, we determined structures
for hTPIWT and hTPII170V at 1.6 and 2.0 Å resolution, respectively, using
X-ray crystallography (see Table 1). Fortunately, wewere able to crystal-
lize each protein in identical conditions, diminishing potential changes
caused by differences in the buffering conditions. The overall fold of
TPI is nearly identical between hTPIWT andhTPII170V (r.m.s.d.= 0.4 Å be-
tween 490 Cα atoms), consistent with our CD analyses. In both struc-
tures, a bromide ion from the crystallization conditions was found in
the active site, as was a phosphate ion which co-purified with TPI
[Fig. 5A,B]. The position of the phosphate moiety is conserved between
our wild-type and I170V structures and closely matches phosphate
groups from TPI co-crystallized with a variety of substrate and inhibitor
molecules [Fig. 5B] [46–50], while the bromide ion [Fig. 5B, red]
occupies the position taken by the triose moiety in structures of sub-
strate bound TPI [46,47,50]. Previousmutagenesis and crystallography
studies have described loop 6 as dynamic, and indeedNMR studies have
shown breathingmotions in this loop [51]. The lid is composed of three
main components— N-hinge, a rigid tip, and C-hinge [52]. The N-hinge
residues 166–168 work in conjunction with the C-hinge (residues 174–
176) to coordinate lid movements [44,45,53].

Residue I170 is located on the rigid tip of loop 6 of the TIM barrel fold
of TPI. Loop 6 of TPI forms a “lid” over the catalytic pocket, and its closure
over the substrate has been shown to prevent the dissociation of cata-
lytic intermediates during substrate isomerization [54]. Within the con-
text of loop 6, substrate binding has been demonstrated to result in the
repositioning of residue I170 closer to the catalytic residue E165 [55].
The resulting orientation of the catalytic site is one in which the side
chain of E165 is effectively clamped between residues I170 and L230,
isolating the residue from bulk solvent and thereby enhancing its basic-
ity [35,56]. In the hTPII170V structure presented here, both V170 and
E165 are able to adopt conformations consistent with a closed pocket,
indicating that the loss of the delta carbon in V170 does not prevent
the protein from adopting the clamped configuration [Fig. 6A].

The side chains of S96 and E165 play critical roles in the catalytic
mechanism for TPI. In an open lid conformation, S96 is positioned to-
ward the catalytic pocket and hydrogen bonds with E165, stabilizing a
non-catalytic conformation [Fig. 6B] [46,57]. Upon substrate binding
and lid closure, S96 rotates out of the catalytic pocket, breaking the hy-
drogen bond with the catalytic E165 which then shifts ~3 Å into the
pocket, where it plays the role of a general base, abstracting a proton
from the substrate as part of the catalytic reaction [58]. In our hTPII170V

structure, we find that the position of S96 side chain is rotated ~120° as
compared to hTPIWT, positioning its hydroxyl 1.9 Å toward the catalytic
site despite having the lid in the closed position [Fig. 6B]; note the

image of Fig.�3
image of Fig.�4


Table 1
Data collection and refinement statistics.

Data collection TPIWT TPII170V

Space group P21 P212121
Cell dimensions
a (Å) 47.92 63.65
b (Å) 48.85 70.73
c (Å) 93.97 91.74
β (°) 103.66
Resolution (Å) 50–1.60 (1.63–1.60) 40.0–2.00 (2.03–2.00)
Unique reflections 52,340 27,738
Rmerge 7.7 (44.2) 13.9 (47.4)
I/σI 40.9 (2.0) 16.2 (2.0)
Completeness (%) 93.8 (54.2) 95.5 (67.4)
Redundancy 5.6 (3.0) 4.8 (1.7)

Refinement

Resolution (Å) 46.60–1.60 38.94–2.00
Rwork/Rfree (%) 15.30/18.73 17.04/21.31
Number of atoms 4058 3972
Protein 3722 3695
Water 326 268
Other 10 9
R.m.s. deviations
Bond lengths (Å) 0.005 0.004
Bond angles (°) 0.962 0.779
Average isotropic B values (Å2) 36.13 35.24
Protein 35.73 35.07
Solvent 40.68 37.55

Ramachandran (%)
Favored 97.34 97.12
Allowed 2.66 2.88
Outliers 0.00 0.00

Values in parentheses correspond to those in the outer resolution shell.
Rmerge = (|(ΣI − b IN)|)/(ΣI),where bIN is the average intensity ofmultiplemeasurements.
Rwork = Σhkl||Fobs(hkl)|| − Fcalc (hkl)||/Σhkl|Fobs(hkl)|.
Rfree = crossvalidation R factor for 5% of the reflections against which the model was not
refined.
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similar orientation of S96 in closed-lid hTPII170V and the superposed
open-lid hTPIWT (2JK2) [Fig. 6C]. The position of H95 which serves as
the general acid [47], and the catalytic E165 are found in the same posi-
tions as in substrate bound complexes indicating that these residues can
still adopt positions consistent with catalysis [58]. Taken together, we
conclude that the I170V substitution in human TPI appears to favor a
closed lid orientation, and the I170V substitution decouples the orienta-
tion of S96 from lid closure.
Fig. 5.Architecture ofWT and hTPII170V. (A) Overview of wild-type hTPI dimerwith one subuni
semitransparent surface (white). The position of the loop 6, which forms the lid and complete
secondary structure elements is indicated. (B) The positions of bromide and phosphate ions ob
pocket as positioned via structural alignment of TPI is indicated (PDB: 1HTI) [48]. Only the PG
critical catalytic residues are indicated by green dashes.
4. Discussion

Little is known about the pathogenesis of TPI deficiency. In the present
report, we have pathologically and physically characterized a human
disease-associated TPImutation. We found that the I170V mutation was
homozygous-viable, yet when paired with a null allele was capable of
inducing a behavioral dysfunction similar to a previously described path-
ogenic Drosophila TPI point mutation [7,8]. These well-characterized fly
behaviors are enriched for neurologic dysfunction, and therefore are
believed to be analogs of the symptoms exhibited by human patients
[59,60].

Seeking a molecular explanation of hTPII170V pathogenesis, the crys-
tal structure of hTPII170V revealed that the I170V substitution altered the
molecular environment surrounding the active site. Specifically, the
substitution of a smaller residue, valine, at the I170 position no longer
makes the positions of S96 dependent on the conformation of the lid.
Additionally, kinetic measurements revealed a significant reduction in
enzyme turnover. These observations suggest three molecular sources
of catalytic dysfunction.

First, the work of Knowles and colleagues has established that the
catalytic rate of TPI is diffusion limited [11]. These kinetic studies have
been recently complemented by solution NMR experiments, demon-
strating that the highly dynamic loop 6 is not gated by occupancy, but
breathes irrespective of substrate, thereby facilitating its diffusion-
limited catalytic properties [22,61,62]. In light of these results, it could
be predicted that altering the rigid tip of loop 6 may change the rigid
properties of the loop, though our crystal structure of hTPII170V does
not reveal any alterations in the relevant peptide backbone [Figs. 5, 6].
Further, the hydrophobic nature of the loop is maintained, as well as
its ability to facilitate the appropriate orientation of the catalytic E165
[Fig. 6A]. These data conclude that in the closed conformation, the
gamma carbons of I170 and V170 are capable of producing the hydro-
phobic interactions necessary to align E165. Our observations are in
line with observations made by Richard and colleagues, wherein a
structurally equivalent I172V from Trypanosoma brucei produced a
more moderate perturbation of TPI catalysis compared to that of I172A,
which lacks the gamma carbon found in Ile and Val [35].

Secondly, the only other structure of a closed TPI complex with an
inward S96 is one bound to a bulky competitive inhibitor (PDB: 1TSI) de-
signed to promote contacts with residues in the periphery of the pocket
[63]. In that structure, the rotation of S96 helped to formanovel hydrogen
bond network with the inhibitor itself. We do not observe any interac-
tions between S96 and the substrate-analogous bromide and phosphate
t indicated as a solid grey surface while the other is represented in both cartoon (blue) and
s the active site pocket is indicated in magenta. The canonical nomenclature for landmark
served in hTPIWT is indicated. The position of the substrate analog PGAwithin the catalytic
A from this alignment is shown for clarity. The network of hydrogen bonding connecting
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Fig. 6. The I170V substitution decouples S96 positioning from lid closure. (A) Substitution of valine at position 170 does not alter E165 or loop 6 positioningwithin the closed lid state. The
structures of hTPII170V (yellow), PGH-liganded TPI (PDB 1TRD, grey), and TPI in an unliganded open state (PDB 2JK2, green) were superposed and the positions of E165 and I170 are
indicated (B). Repositioning of S96 within a closed lid structure in I170V. View of the catalytic pocket after structural alignment of WT (Blue) and I170V (Gold) hTPI structures. The cat-
alytically important residues S96, H95, and N11 are shown as sticks. The catalytic residue E165 is unchanged and is omitted for clarity. The lid for both structures are indicated inmagenta.
(C) hTPII170V adopts a closed lid conformation. The active site from a structural alignment of hTPIWT (green) in an open lid conformation (2JK2) [4] and hTPII170V (gold) is shown. The
positions of the lids and respective active site residues are indicated.
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ions in our I170V structure, but this does not preclude the possibility that
S96 rotation directly inhibits substrate conversion. However, a substitu-
tion in this positionhas been shown tohave a greater influence on the ori-
entation of the catalytic H95 and E165, and exhibits no direct interactions
between S96 and substrate [64].

Finally, a third possible source of reduced hTPII170V turnover may
derive from the decoupling of S96 within the context of loop 6 move-
ment. As mentioned, the substitution of S96 has been demonstrated to
influence TPI catalytic properties through alterations of H95 and E165
dynamics [64–66]. An S96P substitution was shown to mimic Km and
kcat of I170V (chicken TPIS96P (GAP), Km (mM): 0.087, kcat (s−1): 64;
hTPII170V, Km: 0.049, kcat: 75.8;wild type enzyme parameters were com-
parable) [64]. These kinetic deficiencies were linked to altered position-
ing of the catalytic base, E165. Further, the hydrogen bonding between
S96 and the catalytic E165 may serve to assist the torsion of the pro-
ceeding N hinge (P166–V167–W168) of loop 6. Several research groups
have posited the rotation of the N hinge to be the physical mechanism
responsible for loop 6 movement, with hinge mutations also resulting
in reduced enzyme turnover [45,53]. Uncoupling S96 movement from
lid closure in hTPII170V would stabilize the closed lid conformation in
the substrate-bound and -unbound states, as well as potentially reduce
E165mobility, with either of these two possibilities influencing enzyme
turnover. Although our crystallography data do not unequivocally
establish that impaired S96–E165 hydrogen bonding is the primary
affector of hTPII170V catalysis, the data suggest this to be the simplest
explanation for our observed kinetics.

The only previously crystallized human disease-associated TPI
substitution, E104D, indicated a miscoordination of a conserved water
network at the homodimer interface. This alteration of the dimer inter-
face elicited a reduction in hTPIE104D stability, but did not change catalytic
activity [4]. Our data establish the I170V substitution alters catalytic
properties while enhancing TPI stability relative to hTPIWT [Figs. 4, 5].
As such, hTPII170V is thefirst example of a disease associated TPImutation
that enhances enzyme stability.

Although an unanticipated and exciting result, the structure of
hTPII170V does not yield any insight into why we observe dramatic
changes in thermal stability. Indeed, no marked changes are observed
between hTPIWT and hTPII170V at any location other than the catalytic
site [Fig. 5]. Therefore, these structural data lead us to speculate that
lid orientation is likely responsible for the changes in enzyme stability.
Preferential lid closure would provide additional protection from bulk
solvent, and increase overall solvent entropy; a result borne out by
the substrate-induced stabilization of hTPIWT. Interestingly, the prefer-
entially closed lid of hTPII170V, even in the absence of substrate, could
be predicted to reduce the mutant enzyme's sensitivity to substrate-
induced TPI stabilization, in agreement with our data [Fig. 4A].

The effect of the I170V substitution in vivo appears to be complex.
The observed reduction in lysate hTPII170V catalytic activity underlined
the altered active-site geometry, a result corroborated by a previous
study in yeast lysates [13]. Our measurements of catalytic turnover
and Km demonstrated that the I170V substitution reduces both param-
eters. It is important to note that measurements of GAP concentrations
in human tissue suggest that the hTPII170V enzyme operates in the cell
under conditions much closer to saturation compared to the hTPIWT

enzyme. The normal concentration range of GAP in humans has been
reported to be in the 1–20 μM range [67,68], while our Km values for
GAP are 1.4 ± 0.1 mM for hTPIWT and 0.049 ± 0.014 mM for hTPII170V.
These data indicate that each enzyme is likely efficient enough to meet
resting demands. However, recent work established that downstream
glycolytic intermediates can competitively inhibit TPI [34]. Given that
these competitive inhibitors will selectively increase the apparent
Km, a tissue environment of increased glycolytic flux would render
hTPII170V's efficiency limited to its catalytic turnover.We did not observe
abnormal behaviors without stress induction, or changes in longevity,
supporting the capacity of hTPII170V to meet resting needs. However,
behavioral abnormalities were noted upon stress induction, suggesting
the exacerbation of an acute affect.

Irrespective of the molecular mechanism, the findings that hTPII170V

induces pathology and is characterized by decreased catalysis and in-
creased stability demonstrates that reduced TPI stability alone is not
the only means to achieve pathology. Considering these observations
and those of others in the field, we propose that localized, not bulk TPI
activity, is necessary for normal behavior.

The proposal that localized activity could be a critical determinant
of pathology stems from the preeminent finding that hTPII170V has a
dramatic effect on enzyme kinetic parameters. Previous work has dem-
onstrated that a catalytically inactive TPI allele can complement the
toxic TPIM80T substitution. This study concluded that TPI Deficiency is
not correlated with lysate isomerase activity or metabolic stress [3],
yet did not exclude the role of TPI in cellular redox levels [69], or the
possibility of small environments of localized catalytic activity. These
micro-environments may be tissues or subcellular locations with un-
usually high concentrations of DHAP, GAP, or glycolytic intermediates
acting as inhibitors. One such location with high glycolytic flux is the
neuronal synapse. The synapse is a subcellular locale that depends
largely on glycolytic ATP [70]. Further, glycolysis is not only spatially
but temporally regulated in this tissue,with activity promoting acute in-
creases in glycolytic flux [70]. In this way, a spatial or temporal increase
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in TPI substrate at the synapsemay lead to localized deficiencies caused
by the low catalytic turnover of hTPII170V. However, other tissues could
be just as important, and it is unclear whether glycolysis is the central
pathway determining pathology.

TPI activity contributes to the glycerol synthesis pathway, glycolysis,
the pentose-phosphate pathway, and the glycerol 3-phosphate NADH
shuttle. Few, if any mutations in the aforementioned pathways have
been linked to patient neurological dysfunction, and none with the
severity of TPI Deficiency. These observations fail to suggest a singular
biochemical pathway that could be responsible for TPI Deficiency. Addi-
tional work will be needed to explore the putative importance of local-
ized catalytic environments, the participating biochemical pathways,
and their contribution to the unique pathology associated with TPI
deficiency.

In conclusion, the data presented in this study demonstrate the path-
ogenic nature of a previously understudied human mutation, and illus-
trate its unique kinetic and stability properties with a crystal structure.
Using this structure, we suggest a molecular mechanism responsible
for the pathogenic properties of hTPII170V. These results are critical for
directing future experimentation surrounding the largely understudied
role of TPI in animal physiology, the pathogenesis of TPI Deficiency,
and future therapeutic strategies.
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